Honors Advanced Mathematics

Unit 6

Introduction to Calculus

Honors Advanced Math – UNIT 6 Introduction to Calculus

Critical Area:

Students investigate average rate of change and focus on the numeric analysis of change over a short intervals of time, leading to discussion of limit, and instantaneous rate of change. Students engage in intuitive understanding of limiting process. They calculate limits using algebra. Given the correct notation, students practice and apply the definition of limit with various kinds of functions, including piece-wise defined functions with a step-discontinuity. Students formally define limit, and practice existence proofs of limits as x approaches a fixed number. Students justify answers analytically, graphically, numerically, and verbally and construct viable argument regarding the non-routine problems posed. Students understand the interplay between the geometric and analytic information and use calculus to predict and to explain the observed local and global behavior of a function. Students numerically analyze curves by first drawing rectangles, then trapezoids to approximate the area under the curve to discover the physical meanings of the area they have computed. They use Simpson's rule as another approach to approximate the area under a curve.

CONCEPTS	COMMON CORE STATE STANDARDS
Prove and use theorems evaluating the limits of sums, products, quotients, and composition of functions	AP Calc 1.1. Students prove and use theorems evaluating the limits of sums, products, quotients, and composition of functions.
Use graphical calculators to verify and estimate limits	AP Calc 1.2. Students use graphical calculators to verify and estimate limits.
Demonstrate knowledge of both the formal definition and the graphical interpretation of	AP Calc 2.0 . Students demonstrate knowledge of both the formal definition and the graphical interpretation of continuity of a function.
continuity of a function	
Demonstrate an understanding and the	AP Calc 3.0. Students demonstrate an understanding and the application of the intermediate
application of the intermediate value theorem	value theorem and the extreme value theorem.
and the extreme value theorem	
Demonstrate an understanding of the	AP Calc 4.1. Students demonstrate an understanding of the derivative of a function as
derivative of a function as the slope of the	the slope of the tangent line to the graph of the function.
tangent line to the graph of the function	

Understand the interpretation of the derivative as an instantaneous rate of change. Use derivatives to solve a variety of problems that involve the rate of change of a function Use differentiation to sketch, by hand, graphs of functions. Identify maxima, minima, inflection points, and intervals in which the function is increasing and decreasing	 AP Calc 4.2. Students demonstrate an understanding of the interpretation of the derivative as an instantaneous rate of change. Students can use derivatives to solve a variety of problems from physics, chemistry, economics, and so forth that involve the rate of change of a function. AP Calc 9.0. Students use differentiation to sketch, by hand, graphs of functions. They can identify maxima, minima, inflection points, and intervals in which the function is increasing and decreasing. 	
Introduce the definition of the definite integral by using Riemann sums to approximate integrals.	AP Calc 13.0. Students know the definition of the definite integral by using Riemann sums. They use this definition to approximate integrals.	
Introduce Simpson's rule as another approach to approximate the area under the curve.	AP Calc 21.0. Students understand the algorithms involved in Simpson's rule and Newton's method. They use calculators or computers or both to approximate integrals numerically.	
 MATHEMATICAL PRACTICES Make sense of problems and persevere in solving them. Reason abstractly and quantitatively. Construct viable arguments and critique the reasoning of others. Model with mathematics. Use appropriate tools strategically. Attend to precision. Look for and make use of structure. Look for and express regularity in repeated reasoning. 	Emphasize MP 1, 2, 3, 4, 5, 6, and 7 in this unit.	

★ Indicates a modeling standard linking mathematics to everyday life, work, and decision-making.

(+) Indicates additional mathematics to prepare students for advanced courses.

ENDURING UNDERSTANDINGS		ESSENTIAL QUESTIONS		KEY V	VOCABULARY
٠	Derivatives can be interpreted as rates of	1)	What strategies can be applied to determine the limit of a		
	change in various situations		polynomial?	•	Rate of change
•	Derivatives of a function gives information	2)	What relationship exists between the local maximum and	•	Velocity Instantaneous
	about the original function		minimum locations on a graph and a limit or derivative?		rate of change
•	The concept of a limit is one of the	3)	How does the derivative represent an instantaneous rate of change?	•	Average rate of
	foundations of calculus.	4)	How does the integral represent the summation of an infinite set?		change
•	The limit of a function is the value	5)	How do you determine that a function is continuous and/or	•	Asymptotes
	approached by $f(x)$ as x approaches a given		differentiable?	•	Open interval
	value or infinity.	6)	Is there a way to visualize what a derivative is?	•	Close interval
•	The derivative is the instantaneous rate of	7)	How can the concept of limits be applied in mathematics?	•	Approximation
	change at a given point.	8)	How is the concept of a limit connected to a derivative?	•	Area under the curve
•	Derivatives can be used to solve a variety o	9)	What is the best method to use to find the limit of a function?	•	Concavity
	f problems involving instantaneous rate of	10) How do limits approaching infinity help describe the asymptotic	•	Difference
	change.		behavior of a function?		quotient
•	Limits can be determined using algebra,	11) How do limits help determine the continuity of a function?	•	Acceleration
	graphs and/or tables of data.				

RESOURCES	INSTRUCTIONAL STRATEGIES	ASSESSMENT
Materials: California Revised Mathematics Framework: <u>http://www.cde.ca.gov/ci/ma/cf/draft2mathfwch</u> <u>apters.asp</u>	Cooperative learning : Engage all students by using a variety of differentiation strategies including but not limited to questioning techniques, wait time, Think-Pair-Share, peer tutoring, small groups collaboration, etc.	Limits: http://www.wilsonareasd.org/wahs/Vit ko/AP%20Calculus/2%20Limits%20a nd%20Continuity/Assessment/
KHAN Academy https://www.khanacademy.org KHAN Academy – Limits https://www.khanacademy.org/math/differen tial-calculus/limits_topic	Checking for understanding and reflecting on students' background knowledge: Use a variety of strategies to frequently check for understanding such as small white boards, hand signals (thumbs up/thumbs down), parking lot questions, etc. Teachers make connections to students' prior knowledge	Rate of Change: <u>https://www.math.dartmouth.edu/~klb</u> <u>ooksite/2.01/201.html</u> Rate of Change: <u>http://education-</u> <u>portal.com/academy/exam/topic/rate-</u> <u>of-change.html</u>
Derivatives & Rates of Change <u>http://math.njit.edu/docs/C2_6M139SelfAsse</u> <u>ssment.pdf</u>	Problem-solving and abstract reasoning: Analyze the data, compare/contrast, use counterexamples, construct plausible arguments, make conclusions, justify different ways to solve a problem and communicate to others.	Riemann Sums: http://web.henry.k12.va.us/cms/lib04/ VA01000023/Centricity/Domain/389/ Riemann_Sums_b.pdf
Ms. Roshan's Libriary http://www.screencast.com/users/Ms.Roshan	Quick write: Explain the process and the solution by using academic language and key vocabulary	Practice Tests: <u>http://ryono.net/exams_precalch_tests.</u> <u>html</u>
AP Central http://apcentral.collegeboard.com	Modeling and solving real-world problems: Apply algebraic skills and knowledge to solve a variety of engaging/ relevant problems to make assumptions,	
Larson's Calculus http://hmco.tdlc.com/public/icalc/	analyze the data, derive to solutions and draw viable conclusions	
Visual Calculus <u>http://archives.math.utk.edu/visual.calculus/</u>	Technology-enhanced instruction: Utilize graphing calculators, spreadsheets, computer algebra systems, statistical packages and other appropriate software	
Approximating the area under a curve:	Project-based learning: Use a variety of problem- solving assignments such as creating/ solving word	

http://www.education.com/study-	problems and the culminating unit tasks.				
help/article/rectangular-approximations/					
Paul's online Math Notes:					
http://tutorial.math.lamar.edu/Classes/Calcl/					
Tangents_Rates.aspx					
Area under a curve:					
https://www3.nd.edu/~apilking/Math10550/L					
ectures/24.%20Areas%20and%20Distances.					
<u>pdf</u>					
	LANGUAGE GOALS				
• Students will describe orally and in writing the purposes of and differences among sample surveys, experiments, and observational studies. <i>Example:</i> "Based on the survey of teenage high school students, more students are more/less likely to than"					
• Students will decide whether a specified model is consistent with results from a data simulation. <i>Example:</i> "A model stating that a spinning coin falls heads up with a probability of 0.5 is not consistent with a simulation result of 5 tails in a row."					
• Students will explain orally and in writing how they use statistical and probability concept in their lives, using the following specific set of words: <i>distribution, mean, standard deviation, probability,</i> and <i>statistics.</i>					
<i>Example</i> : "Based on the distribution of test sc	ores with a mean of and a standard deviation of, a test score of is (<i>adjective</i>).				
• Students will explain orally and in writing are	as under the normal curve allow us to answer and model real life situations.				
PERFORMANCE TASKS					
Modeling:					
https://www.math.dartmouth.edu/~klbooksite/2.01/201.html					
https://www.intuitioutil.out/_kioooksito/2.01/201.ittil					
http://www.cpm.org/pdfs/information/sampleChapters/PCT_Ch9_TV.pdf					

LAUSD Secondary Mathematics

 Tasks/Activities:

 http://illuminations.nctm.org/Lesson.aspx?id=2955

 http://illuminations.nctm.org/unit.aspx?id=6085

 Projects:

 http://realteachingmeansreallearning.blogspot.com/p/open-ended-math-projects-and-lessons.html

References:

- 1. National Governors Association Center for Best Practices, Council of Chief State School Officers. (2010). *Common Core State Standards (Mathematics)*. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
- 2. McCallum, W., Zimba, J., Daro, P. (2011, December 26 Draft). *Progressions for the Common Core State Standards in Mathematics*. Cathy Kessel (Ed.). Retrieved from http://ime.math.arizona.edu/progressions/#committee.
- 3. Engage NY. (2012). New York Common Core Mathematics Curriculum. Retrieved from <u>http://engageny.org/sites/default/files/resource/attachments/a-story-of-ratios-a-curriculum-overview-for-grades-6-8.pdf.</u>
- 4. Mathematics Assessment Resource Service, University of Nottingham. (2007 2012). Mathematics Assessment Project. Retrieved from http://map.mathshell.org/materials/index.php.
- 5. Smarter Balanced Assessment Consortium. (2012). Smarter Balanced Assessments. Retrieved from http://www.smarterbalanced.org/.
- 6. Partnership for Assessment of Readiness for College and Career. (2012). PARCC Assessments. Retrieved from http://www.parcconline.org/parcc-assessment. Retrieved from http://www.parcconline.org/parcc-assessment.
- 7. California Department of Education. (2013). Draft Mathematics Framework Chapters. Retrieved from http://www.cde.ca.gov/be/cc/cd/draftmathfwchapters.asp.
- 8. National Council of Teachers of Mathematics (NCTM) Illuminations. (2013). Retrieved from http://illuminations.nctm.org/Weblinks.aspx.
- 9. The University of Arizona. (2011-12). Progressions Documents for the Common Core Math Standards. Retrieved from http://ime.math.arizona.edu/progressions.